
A two-parameter quantization of sl(2/1) and its finite-dimensional representations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 817

(http://iopscience.iop.org/0305-4470/27/3/023)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 23:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A. Math. Gen. 27 (1994) 817-829. printed in the UK 

A two-parameter quantization of sZ(2/1) and its 
finite-dimensional representations 

R B Zhang 
Department of Theoretical Physics, Research School of Physical Sciences and Engineering, 
Australian National University, Canberra, Australia, and 
School of Mathematical Sciences, Australian National Uniwrsity, Canberra, Australia 

Received 17 June 1993 

Abstract n;e Lie superalgebra 6(2/1) is quantized in its non-standard simple root system, 
resulting in a two-parameter quantum superalgebra Uq,,n(sl(2/l)) .  When the two panmeters 
coincide, Uq,,q2(s1(2/l)) reduces to aone-parameter dependent &-graded Hopf algebra, which 
is algebraically equivalenc but coalgebraically inequivalent, to the standard U4(sl(2/l)). The 
finite-dimensional irreducible representations of this two-parameter quantum superalgebra are 
explicitly constructed when both or one of 41 and 42 are considered as indeterminates, and 
cyclic ryesentations are also obtained when bath deformation parameten are roots of unity, 

1. Introduction 

It is well known that Lie superalgebras admit Weyl group inequivalent simple root systems 
[1,2]. The simplest example is the rank-2 Lie superalgebra sl(Z/l). Its standard simple 
root system consists of one even and one odd simple root, while the non-standard one 
has both simple roots odd. It is merely a matter of convention which simple root system 
one chooses for a Lie superalgebra. However, in the quantization of Lie superalgebras, the 
simple generators play a special role, especially where the comultiplication is concerned, and 
it becomes unclear whether different choices of simple root systems will lead to equivalent 
&-graded Hopf algebras. This problem is interesting not only mathematically, but also 
for practical purposes. For example, if the quantum supergroups associated with different 
simple root systems are inequivalent, then there will exist different universal R-matrices, 
and it may also be possible to construct different spectral parameter-dependent solutions of 
the Yang-Baxter equation using their representation theory. 

Another question is whether it is possible to carry out multiparameter quantizations 
of finite-dimensional Lie superalgebras when the non-standard simple root systems are 
used, such that the resultant quantum superalgebras admit non-trivial finite-dimensional 

 representations when the deformation parameters are regarded as indeterminates, and reduce 
to quantum supergroups of Drinfeld-Jimbo [3,4] type in a certain limit of the deformation 
parameters. There are many papers studying multiparameter quantizations [5-131, and a lot 
of interesting results have already been obtained. From these works, we can also see that it 
is a highly non-trivial matter to carry out multiparameter deformations for both Lie algebras 
and Lie superalgebras; especially when one requires that the resultant (super)algebras should 
depend on the extra parameters intrinsically. The only such multiparameter quantum 
superalgebras obtained so far are the two-parameter s l ( l / l )  [ l l ]  and osp(4/2) [12], and 
Lee’s [I31 U, ,Jg l (g ) ;n )  which depends on a generic parameter q and a root of unity s. 
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The difficulty in constructing interesting multiparameter quantum algebras lies in the fact 
that extra parameters often spoil the Serre relations, and this in turn rules out the possibility 
of the (super)algebra having non-hivial finite-dimensional representations. However, for 
some superalgebras in their non-standard simple rmt systems, the Serre relations appear 
much less stringent. In fact, in the case of d(2/1), no Serre relations are required at all in 
order to present the superalgebra by generators and relations. Therefore, there seems to be 
room to manoeuvre in searching for multiparameter deformations. 

In this paper we consider the quantization of sl(2/1) in its non-standard simple root 
system, and study the finite-dimensional representations of the resultant superalgebras. 
A two-parameter quantum superalgebra, Uq,,qa(sl(Z/l)), is obtained, which has distinct 
algebraic structures from the standard quantum group U,,(d(Z/l)).~ When ql is equal 
to 42. it reduces to a one-parameter quantum superalgebra, Uq,q(sZ(2/l)), which admits 
comultiplication, counit and antipode, and hence has the structures of a Z2-graded Hopf 
algebra. We will show that this quantum supergroup is algebraically equivalent to, but 
coalgebraically different from, U q ( d ( 2 / l ) ) .  Due to the presence of the extra parameter in 
Uy,,a(d(2/l)), new features also arise in the representation theory, thus rendering it more 
interesting to study. We will classify   all the finite-dimensional irreducible representations 
(irreps) of Uq,,a(d(Z/l)) when both 41 and q 2  are regarded as indeterminate, and also 
construct the irreducible cyclic representations when both q1 and q2 are roots of unity. 

In section 2 we present the two- 
parameter quantum superalgebra Uq,,a(d(2/l)), and study its relationship with the standard 
quantum supergroup Uy(d(2/l)). In section 3 we classify the finite-dimensional irreps of 
Uy,,q2(sl(2/l))  when at least one of the deformation parameters is generic, while in section 4 
we analyse the properties of Uq,,yz(d(2/l)) when both ql and q 2  are roots of unity, and 
also construct all its irreducible representations. 

The organization of this paper is as follows. 

2. A two-parameter quantization of s1(2/1) 

Recall that the Lie superalgebra sl(Z/l) is of rank 2. By introducing the three-dimensional 
vector space with a basis [cili = 1,2,3), and defining an inner product (, ) on it such that 

(6;. g j )  = ( - I )%~~ 

the roots of sl(Z/l) can be expressed as 

k ( E (  - cj) i < j .  

We will denote by H" the two-dimensional subspace spanned by the roots. There are two 
Weyl group inequivalent simple root systems. The standard one is [e, - €2. €2 - €31, while 
the other has the simple roots 

f f l  = €3 -cl ff2 = €2 -~ €3 

which obviously satisfy 

(a;, ruj) = 1 - 8,. 
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With the latter choice for the simple roots;the enveloping algebra U ( s l ( 2 l l ) )  of the Lie 
su eralgebra s1(2/1) can be defined as the &-graded associative algebra generated by 
[ei , fi , hi ] I  = 1,2), with the relations Po, (0) (0) . 

e(o) (0) - &..h(O) 
{ f  .& I -  II i 

[hy), e:)] = (ai, a,)ej (0) 

[h$, &(')I = -(ai,a.) f") 

[hi , h j  1 - 

(e!'))* = (f i(O)) '  0 vi, j 

J j  

(0) (0) - 0 

where 

{x ,  y }  = x y  + yx 

and the gradation is defined by 

[ x ,  y1 = ~ x y  - yx 

deg(eF') = deg(fi(O)) = ~ l  deg(hy') = 0 Vi. 

An important feature of the above definition is that no Sene relations appear explicitly. The 
nilpotency of e!') and f,'", fori = 1,2, guarantees the finite-dimensionality of sZ(2/1). Our 
purpose in this section is to quantize the enveloping algebra U(sZ(2/1)) in the most general 
way, requiring that the resultant quantum superalgebra has non-trivial Enite-dimensional 
irreducible representations. 

However, a two- 
parameter quantization can also be obtained, which we denote by Uq,,q2(sZ(2/1)). It is 
a &-graded associative algebra generated by {et ,  fi, hi [i = 1,2}, with the relations 

It is straightforward to deform U(sZ(2/1)) with one parameter. 

and the grading defined by 

deg(ei) = deg(fi) = 1 deg(q") = 0 Vi. 
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We wish to emphasize that it is not possible to eliminate any one of the two parameters by, 
for example, redefinition of the generators etc. Therefore this quantum superalgebra indeed 
depends on q1 and ql intrinsically. It also possesses non-trivial finitedimensional irreducible 
representations when both of the deformation parameters are regarded as indeterminates, as 
we will show in the next section. Recall that in the standard choice of simple roots, 
no such multiparameter quantization is allowed, as it would in general spoil the Serre 
relations, and this in turn rules out the possibility of having any non-trivial finite-dimensional 
representations. 

When q1 = qz = q, the above superalgebra reduces to Uq&l(2/1)), which admits the 
following comultiplication 

A(ej) = ej @ qh; + 1 @ ei 

A ( 5 )  = fi 8 1 +q-ht @fi 
A(hi) =hi @ 1 + 1 @ hi Vi.  

Counit and antipode can also be introduced in this special case, hence, Uq&l(2/l)) has the 
structure of a &-graded Hopf algebra. It should be pointed out that the defining relations 
for the Lie superalgebra sl(2/1) and its one-parameter deformation Uq,9(sl(2/l)) have also 
been obtained in [14]. 

An important question is how Uq,q(sl(2/l)) relates to the standard quantum supergroup 
Uq(d(2 /1 ) ) .  For the sake of concreteness, we copy the definition of the latter below. It is 
a &-graded Hopf algebra generated by {E;.  Fi. Hili = 1.21 with the relations 

where 

and the grading is defined by 

deg(E1) = deg(F,) = deg(Hi) = 0 

deg(Ez) = deg(Fz) = 1. 

A comultiplication is given by 



A two-parameter quantization of sE(2 / I  ) 821 

Let 

Eo =qH'f3Hz(F2F1 - q F i F z )  

Fo = ( E l &  - 4-1E2E~)q"H'%3H2) 

and define a map U9(sZ(2/1)) -+ Uq.q(sZ(2/I)) by 

EO 6 el F o ~ ~  f i  

EZ I+ ez Fz I+ fz 
H2 H hz x, H -h, - hz. 

Using lemma 4 of [ lS ]  we can easily show that this map gives rise to an algebra 
isomorphism, which, however, does not preserve the coalgebraic shuctures. Other algebra 
isomorphisms between Uq(sZ(2/1)) and Uq,q(sZ(2/1)), can also be constructed, but again 
none of them qualifies as a Hopf algebra map. Therefore we conclude that Uq(d(2/l)) 
and -Uq,9(sl(2/1)) are inequivalent &-graded Hopf algebras. This fact is interesting, as 
one may construct inequivalent solutions of the Yang-Baxter equation by using the same 
representation, but different coalgebraic structures. 

Below we give the universal R-matrix for Uq&l(2/l)). Define 

we have 

where 

I 1  n=O 

with 

It is tedious but not very difficult to prove by direct computation that the R defined 
above indeed satisfies all the defining relations of a universal R-matrix. 

It is woahwhile finding out whether Uql,a(sZ(Z/l)) is a Hopf superalgebra when 
q1 # 42, and if so, whether it is quasitriangular, i.e. admits a universal R-matrix. 
However, even if the answers to these questions are negative, Uq,,q2(sl(2/l)) at q1 # q2 
is still interesting, and well merits a thorough study. This quantum superalgebra has the 
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important properties that the BPW theorem for U(sI(2/1)) is preserved (see section 3). and 
all but one family of the finite-dimensional irreps of U(sl (2 l l ) )  are deformed to finite 
dimensional irreps of Uq1,n(sl(2/1)). No such multiparameter quantization appears to exist 
for ordinary Lie algebras, e.g. sZ(3), or even the Lie,superalgebra sl(Z/l) itself with the 
standard simple root system. Also, from the point of view of representation theory, this 
quantum superalgebra is particularly interesting. As will be discussed in detail in the next 
section, U,,., (sZ(2/1)) does not contain any non-commutative even quantum subgroup 
when q1 # 92, thus the well developed induced module construction for quantum supergroup 
representations cannot be applied to this quantum superalgebra, and a new method has to 
be devised in order to construct its representations systematically. 

3. Highest-weight representations 

In this section we classify the finitedimensional irreducible representations of 
Uq1,q2(sl(2/1)) when both 41 and qz are regarded as indeterminates, or one of them is 
a root of unity. The remaining case will be treated in the next section. Note that when both 
q1 and qz are indeterminates, Uq1,q2(sl(2/1)) does not have a quantum sl(2) subalgebra, 
thus the method developed in [16] for constructing highest-weight irreps for type I quantum 
supergroups does not apply here, and new techniques are required. 

Define 

N+ = Kele2)'. e z ( e d ,  (ezel)', el(ezel)'/k =o, 1, .  ..I 
N ~ = { ( h ~ ) k ( h z ) ' l k , Z = O , l ,  . . . I  
N- = {Lf i fdk.  fz(fif~)~, (fzfiIk, fi(fzfi)'lk = 0 ,L .  . . I .  

Then 

U,, .qt (sl(Z/ 1 )) = N-NoN+. 

To construct representations for this algebra, we consider a one-dimensional NoN+-module 
{U"] such that 

eiu" = 0 hju" = (A,LY;)u" A E H' 

where H* and the bilinear form (, ) on it are as defined at the beginning of the last section. 
Now we construct the U,,.,(sl(Z/l))-module 

V(A) = N_(U*] 

which, however, may not be ineducible in general, and in that case, contains a unique 
maximal proper submodule M(A).  It is obvious that the quotient module 

V(A) = V(A)/M(A) 

is irreducible and, as will become clear later, uniquely characterized by A. Our purpose is 
to determine the necessary and sufficient conditions on A in order for the Uq,,q2(sl(2/1))- 
module V(A) to be finite dimensional, and also construct a basis for this module. 
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Now we assume that both q1 and qz are indeterminafes. Let 
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hi = (A, ai) i = 1,2  

then any given A must belong to one of the following three cases: 

0) hi = hz = 0 

(ii) 

(iii) 

hl # 0 or 1 2  + 0 

hl # 0 and hz # 0 

The first m e  yields the trivial module. In the second case, we first look at the situation 
A1 = 0, hz # 0. If V(A) is finite dimensional, there must exist such a kn that is the smallest 
positive integer rendering f2(fif~)~^u" = 0. Therefore 

e m . f z ( f t f z ) k A u A  = [Az - k ~ l q ~ [ - k n ] q , f z ( f i f ~ ) ~ ~ " ~ "  = 0 

which requires k,, = 12 E Z+. The situation with hi # 0, hz =~O, can be studied similarly, 
and the dimensions and bases for the irreducible modules can also be easily obtained. We 
have the folIowing results: 

hi = 0 hz E Z+ 

V(A)={v" ,  (fifz)"+'~", fz(fifz)k~Alk=O,l,...,hz- 11 (6)  

dim V(A) = 2hz + 1 

2.1 E Z+ hz = 0 

(7) K+lVA V(A) = {uA. (fzfi) 
dim V(A) = 211 + 1. 

, f i ( f d ~ ) ~ u " l k  = 0.1,. . . ,h i  - 11 

Now we study the case with AI  # 0, hz # 0. We again denote by V(A) the irreducible 
Uq,,,(sl(2/I))-module with highest-weight A. and the highest-weight vector ,uA. In order 
for V(A) to be finite dimensional, there must exist positive integers kn ind 1~ satisfying 

fZ(f1f2)%Jh = fl(f*fi)"U" =o. 
We assume that kA and In are the smallest positive integers having this propem, then the 
equations 

eiezfi(fifi)kAuA = ([kn - hilq,[kn - h l q 3  - Ih~l , , [hzlq~)f i ( f i f i )""- '~~ = o  
ezeifi(fzfi)'*uA = ([LA - ~ I I ~ ~ [ I A  - hzlqr - [A~Iq,[Azl~~)f~(fzfi) 

require that 

In-I A U = 0 
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When both 41 and q 2  are regarded as indeterminates, this set of simultaneous equations 
admits positive integer solutions for kn and 1~ if and only if 

I , = A 2 = h # O  2 h € Z +  (9) 

and the corresponding solutions read 

k A  = I , j  = 2A. 

To see how (9) arises, consider, say, the first equation of (8). Take the limit 41, 42 + 1; 
we obtain 

k A  = A1 + Az. 

Putting this back into the original equation, we immediately see that hl = hz is also required. 
Needless to say, one naturally expects constraints like (9)  on the highest weight, just as in 
the case of classical su(2). only integer and half-integer spin representations are of finite 
dimension. 

To construct a basis for the irreducible Uq,,,(sl(2/1))-module V(h) with A satisfying 
(9), we note that 

7 J . A  
( f l f2)7J.u" = (f2fi) 

hence we have 

However, when q1 = 42, the more general condition 

Ai+AzEZ+ h 1 # 0 ,  h z # O  (11) 

is necessary and sufficient to insure the existence of positive integer solutions of (8) 

k A  1~ = A1 f 12. 

In this case, a basis for V(A) reads 

V(N=((f i fz) 'vA,  f i ( f i f d k u h ,  (fzfi) 
dimV(A) =.4(h, f h z ) .  

k+1 A U , f i ( f ~ f i ) ~ u " l k = 0 . 1 . . . . , h 1  f h z -  1) 
(12) 

It is clear that the irreps constructed above constitute all the finite-dimensional 
imps of the quantum superalgebra Uql,q2(sl(2/l)) when both 41 and q 2  are regarded as 
indeterminates. As Uq,q(sl(2/l)) is algebraically isomorphic to the standard quantum 
supergroup Uq(sl(2/l)), there should exist a one-to-one correspondence between the imps 
constructed here when q1 = q 2  and those of [16]. This is indeed the case: the irreps with one 
of the A's vanishing are equivalent to the atypicals, and those with both A's non-vanishing 
to the typicals [16]. Note that in the latter case, both hl and A2 can be complex numbers, 
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so long as their sum is a positive integer: This accounts for the one complex parameter 
family of finite-dimensional typical irreps obtained'in [16]. 

~ Also observe that the finite-dimensionality condition (9) is so stringent that it excludes 
the highest weights where both AI  and 2.2 are arbitrary positive integers. This might be 
an indication that, when q1 # 42, Uf,,q2(sZ(2/l)) does not admit a cc-multiplication, as 
otherwise it would be conceivable that repeated tensor products of the irreps given in (6) 
and (7) could yield finite-dimensional irreps with such highest weights. (Of course we should 

aware that finite-dimensional representations of U,,,, (sJ(Z/l)) are not fully reducible. 
thus the reliability of the above argument needs investigation.) 

We now Nm to the construction of highest-weight irreps of Uq,,a(sl(2/l)) when one of 
the deformation parameters is aroot of unity, while the other is regarded asan indeterminate. 
We should point out that in the present case, if one disregards the hi's in Uq,.q2(sl(2/l)) 
and considers the q,Thi's only, then several highest weights may lead to the,same irrep. 
A detailed discussion of this problem will be given in the next section, here we merely 
construct the irreps. 

We assume that ,q1 is generic, but q2 is a root of unity. Let N' be the smallest positive 
integer such that q; = 1. Define 

N'/2 if N' is even 
N =  

I N '  if N' is odd. 
There exists three classes of finite-dimensional irreps of U,t,a(sZ(2/1)) with the highest 
weights, respectively, satisfying the following conditions: 
(i)~Al E Z+, 1 2  = 0 (mod N ) .  
A basis and the dimension for the finite-dimensional irreducible uq,,*,(sl(2/1))-module 
V(A) are given by 

V ( N = ( u " ,  (fifi)k+'u", f i ( f z f i ) ' ~ " l ~ = O . l , . . . . ~ i  -11 

dim V(A) = 211 + 1. 
(13) . 

(i) 11 0, A2 E Z+. 
In this case we define & E [O, 1,.  . . , N - 1) by A2 = i 2  (mod N ) ,  then 

V(A) = [U", (fifz)'+'~", fi(fifz)'v"Ik = 0, 1, ..., i z  - 1) 
dim V(A) = 2x2 + 1. 

(14) 

(iii) A1 # 0, A2 f 0 
In this case there are two possibilities for finite-dimensional irreps to exist. One possibility 
is 

(mod N ) .  

211 E Z+ 212 5 2Al  (mod N') 

211 E Z+ 2Al = N (mod N') N' even A2 E C. 

and the other is 

In both cases, we have 

V(A) = [ ( f i f d k u " .  f i ( f i f i ) ' u " ,  (fzfi)'+'u". fi(fifi)'U"lk = 0, 1, . ._. 7-11 - 1) 

dim V(A) = 811. 
(15) 

As the roles of q1 and q; can be interchanged by exchanging the indices 1 and 2 for 
the generators, the classification of irreps in the case when q2 is generic and q1 is a root of 
unity can be easily derived from the results obtained above. 
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4. Cyclic representations 

In order to develop the representation theory for Uq,.q2(d(2/l)) when both of the 
deformation parameters are roots of unity, we alter the definition of the quantum 
superalgebra slightly by saying that it is generated by [ei ,  fi, qFhh'li = 1,2} subject to 
the relations (2). Properties of Uq,,q2(sl(2/l)) in the present case differ drastically from 
those where at least one of the deformation parameters is generic. Let NI and N; be the 
smallest positive integers such that qy = 1, i = 1,2. Define 

N i / 2  if I?,! is even 

if Ni is odd I N; 
Ni = 

and let M be the smallest positive integer divisible by both NI and N; and 

N; even, M/2 odd 

otherwise. 
M'= { 7 

We have the following useful result: the elements 

all commute with Uq,,,(sl(2/1)). We denote by ZO the algebra generated by r* and $'. Then it is obvious that ZO does not have zero divisors, i.e. for any x ,  y E ZO, if 
x # 0, y # 0, then xy # 0. Therefore it makes sense to talk about the quotient field of 
ZO, which we denote by Q(Z0). Over this field, Uq,,-(sl(2/I)) is finite dimensional. More 
explicitly, letting 

QKJqj,,(~~(~/1))) Q ( ~ o )  820 Uq3,,(~l(2/1)) 

we have 

Q W q ,  ,qx (sl(2/ 1))) = Q (N+) Q (NO) Q W-) 

with 

Q(N+)  ={(e&'. ez(elez)', (e2edk, el(eze1)'lk = 0 , L  . . . , M - 11 
Q ( N ~ )  = {(4:')'(qzhf)'lk,1= o , i , .  . . , M - 11 
QW-) = I(fifdk, f z ( f i f d k .  

In plain terms, the quantum superalgebra Uq,,,(sl(2/l)) is finite dimensional, up to the 
elements of ZO . Therefore, all its irreps must also be finite dimensional. 

Let us first consider the highest-weight irreps. The highest-weight vector U" of the 
irreducible U,,,, (sl(2/1))-module V(A) satisfies, by definition, 

fi(fzfi)'lk = 0.1,. . . , M - 11. 

hr A - A i  A vi. eiu" = o  4i U -qi U 
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Note that the hi's are not uniquely defined, as q;+kN' = qp . To eliminate this arbitrariness, 
we require that 

O < R e h i < N i  i = l , 2  (17) 

where Rehi denotes the real part of hi. Then each inep is uniquelycharacterized by such a 
A E H " .  (One may think that (17) is too restrictive to allow for all the irreps, as qp = -1 if 
Nil is even. This of course is not true, as the sign of q: can be altered by the isomorphisms 
e i ~ H  wiei, fi H fi, q? H wiq?, mi =&I ,  i = 1,2.) 

The highest weights may be classified into three types; we explicitly construct the bases 
for the irreducible highest-weight U,,,,(sl(2/l))-modules in each type. 

(5, AI =,A2 = ~ O  
We have the trivial irrep. 
(ii) One of A1 and A2 is non-vanishing: 
Define ZK = IO, 1, .  . . , K - l), 0 c K E E+, then 

AI  = ~ O  

(18) 
V(A) = [U"., (fifi)'+'U"., fz(fifz)'~".lk = 0, 1, . . . , (d - 3)/2) 

where kn is defined by NI > k". E Z+, and h = 11 + hz (mod NI). 

A common feature of the irreducible highest-weight U,,,,(d (2/1))-modules constructed 
above is that the invariants r* both take zero eigenvalue. This distinguishes them from a 
class of irreps, called cyclic, where we have non-vanishing r- and/or r+. 

To construct the cyclic irreps, we start with a one-dimensional module [uo] over the 
superalgebra generated by [el, f2, 4 7 )  such that 
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Define 
V o = ( u ~ = ( e l e z )  k uolk=0,1, ..., M - 1 )  

(22) V = VO CB fiV0 e e z v o  fiezV0. 

We specify the action of fzfi and the eigenvalue of r+ in v by 

Then P gives rise to a U,,,,(sl(2/1))-module. which, although obviously indecomposible, 
may not be irreducible in general, and in that case we factor out from it its maximal proper 
submodule Z to obtain the irreducible Uq,,,(sl(2/l))-module 

v = B/z. 
Since r- commutes with all the elements of Uq,,qz(sl(2/1)), it takes the constant eigenvalue 
y- on v, which can be easily worked out to be 

~~ 

Now several remarks are in order: note that the requirement q u o  = fzuo = 0 does 
not impose any constraint on the irreducible module V. As both el and f2 are nilpotent 
and anticommute with each other, there always exist vectors satisfying the condition in any 
irreducible module. Also, the first equation of (23) holds in any irrep with y+ a complex 
parameter determined by the irrep itself. However, the second equation of (23) is necessary 
in order to turn into a Uq,,,(sl(2/1))-module. Also, for uk E VO 

eluk = fzvk = 0 

f z f i v k  = ([&I + kl,, tpz + k - 1Iqr - [pilq, [ILZ - + xy+)vx-i 

therefore, every ux is on the same footing as UO. We require that the y+ do not vanish 
simultaneously, as otherwise V would be isomorphic to one of the highest-weight modules 
discussed earlier. From now on we assume that this condition is fulfilled. Observe that 

fzelf iezuk =auk 6 = tfiilqJpz - Ilqz - XY+. 
If S # 0, then v itself is irreducible, i.e.-V = v. In fact, in the special case with NI = Ni, 
V coincides with the typical cyclic irreducible Uq(sZ(2/1))-module constructed in [16]. For 
this reason, we call V typical. 

When 6 = 0 we call V atypical. In this m e  

I ={fiezw, W ~ = [ I ~ I + ~ I ~ ~ ~ Z U  k. -  f i~ l+ l lk=0 ,1 ,  ..., M - I j .  

Hence 

v = v, @ v, VI = ~ ( f i V o ~ e z V o ) / ( w r I k = O , l ,  ..., M-1).  

The matrix elements of the generators of Uq,,a(sl(2/1)) in the cyclic irreps can also be 
easily worked out, but we will not do it here. 
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5. Discussion 

We have shown that the one-parameter quantum supergroup ~Y~,~ (d(2 /1 ) )  associated with 
sZ(Z/l) in its non-standard simple root system is algebraically equivalent to the standard 
quantum supergroup Uq(sl(2/l)). However, it remains to be seen whether this is also true 
for the other superalgebras, and it might turn out that the answer to this question is negative 
in general. 
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